The Voters’ Curses

Why We Need Goldilocks Voters

Supplemental Appendix: Representative voter set-up

A Equilibrium definition and proofs

We first introduce some notation. Denote by o;(t) = (p;(t),y;(t)) € {0,1} x [0,1] the
strategy (policy choice and communication effort) of a type t € {¢,n} candidate j € {1, 2}.
The tuple of strategies is denoted by o; = (0j(c),0j(n)). Denote by m; € {0,p;} the
outcome of electoral communication: whether the voter observes candidate j’s platform.
If mj =0 (m; = p;), communication has been unsuccessful (successful). We also denote
by p(m;,x) = p; the voter’s posterior belief that candidate j is competent conditional on
observing m; and her attention z. Finally, denote voter’s electoral strategy (probability of

electing candidate 1): s;(mq, mo,x) € [0,1].

Definition 1. The players’ strategies form a Perfect Bayesian Equilibrium if the following

conditions are satisfied|]

"When indifferent, we suppose that candidates follow the strategy which maximizes the

voter’s welfare as it is usual.



1

1) si(my,ma,x) = 172 Eu(un(pr,2)|mi,01) S Eu(uy(p, 2)lma, 0);

0
\
2) y](t7p]) = C”“Qmaxye[o,l} E(uj(pj7y;t)|xaslvo-—j)7 j € {1a2}a t e {Cv TL},’

8) x = arg maXgze(o,1] E(uy(pe, 7)|51, 01, 02);

4)Vje{1,2}, t € {c,n},
1 >
pj(t) = Mg E(uj(la yj(ta 1); t)|IB, 51, O—j) < E(uj(ov yJ'(t? 0); t)l:lf, 51, U—j);
0
5) p(mj, x) satisfies Bayes’ rule whenever possible.
Note that condition 1) is equivalent to: after observing m; and m_;, the voter elects candidate
J € {1,2} with probability 1 rather than his opponent (—j) if and only if (Vm;, m_;, oy,

and o_;):

1ipi ()G + (1 — py)p;(n) L > p—jp—;(c)G + (1 — p—j)p—;(n)L (A1)

Let I'(0;(t),0_;) = E[Ia+ %‘pj(t),yj(t);a_j} be the probability that a type t € {¢,n}
candidate j is elected when he plays strategy o;(¢) and his opponent plays o_;, where A
is the event “equation holds” and B is the event “both sides of are equal.”
The expectation operator is over the probability of successful communication with candi-
date j € {1,2}, candidate —j and candidate —j’s type. I'(g;(t),0_;) is increasing with

p(p;(t), ©)p; ()G + (1 = ulp; (1), ))p; ()L and pu(B, 2)p; ()G + (1 — u(, ))p;(n) L.
Lemma A.1. There is no equilibrium in which p;(c) =0 and p;j(n) = 1.

Proof. The proof is by contradiction. First, suppose a non-competent candidate j plays
oj(n) = (1,y;(n)), yj(n) > 0 and a competent candidate j chooses p;(c) = 0. When commu-

nication with the voter is successful, a non-competent candidate j is elected with strictly pos-



itive probability if and only if (by (A.1))): L > p_jp_;j(c)G+(1—p_;)p—j(n)L. When commu-
nication with the voter is not successful, a non-competent candidate j is elected with strictly
positive probability if and only if: (1 — (0, 2))L > u_;p—;(¢)G + (1 — p—;)p—j(n)L. Given
the properties of the communication cost functions and y;(n) > 0, we have u(0,z) € (0,1).
Then it must be that: (1 — u(@,x))L > L. Therefore, a type n candidate’s probability of
being elected is strictly greater when m; = (). Because a candidate always values being
in office (k,, < 1) and communication is costly, o;(n) = (1,y,(n)) is strictly dominated by
o;(n) = (1,0). Hence we have reached a contradiction. Suppose a non-competent candidate
J plays oj(n) = (1,0). Since the voter never observes his platform, his choice of p;(n) does

not affect his probability of being elected. Since the new policy is costly (k, > 0), it must be

that o;(n) = (1,0) is weakly dominated by (0, 0). O

A non-competent candidate never wants to choose p = 1 when a competent type chooses
p = 0. By separating, he simultaneously lowers the probability of election and his expected

payoff conditional on election (due to the policy cost).

Lemma A.2. In any equilibrium, a candidate’s probability of winning the election is (weakly)

greater after successful communication.

Proof. Fix candidate —j’s strategy o_;. Using Lemma [A. 1] we need to consider only three
cases: 1) p;(c) =0, pj(n) =0,2)p;(c) =1, pj(n) =0, and 3) p;(c) =1, p;(n) = 1. Incase 1),
successful communication has no impact on the probability of being elected since the voter’s
payoff does not depend on a candidate’s type. In case 2), using a similar reasoning as in the
proof of Lemma a type n exerts zero communication effort. Successful communication
thus reveals a candidate is competent and implements the new policy. By , candidate

j’s probability of winning the election is higher after successful communication. In case 3),



at the communication stage, both types solve the same maximization problem modulo the
policy cost. A type n’s value of office is lower under the assumption that k. < k,,. Therefore,
a type ¢’s communication effort is weakly higher (as a result of condition 2 in Definition E|
Successful communication thus weakly increases the voter’s posterior about j’s competence.

By (A.1]), the probability she elects candidate j is higher. ]

Proof of Lemmal[l. Necessity. We prove the counterpart: p; = 0 = y; = 0. On the equilib-
rium path, given p;(t), the maximization problem of a type ¢ € {¢,n} candidate j € {1,2}
chooses y;(t) is: max,>o '((p;(t),y),0-;)(1 — p;(t)k) — C(y), j € {1,2} t € {¢,n} The so-
lution y;(t) affects I'(-; -) only through the probability that the voter observes m;(t) = p;(¢).
Using Lemma[A 1] we just need to focus on two cases: 1) p;(c) = p;j(n) = 0 and 2) p;(c) =1
and p;(n) = 0. In case 1), since the voter anticipates correctly candidates’ strategies in
equilibrium, communication has no effect on a candidate’s electoral chances. Since commu-
nication is costly, it must be that y;(¢) = 0. In case 2), by , a type n candidate j wants
to minimize the probability that the voter observes m; = 0. Since communication is costly,
it must be that a type n candidate j chooses y;(n) = 0 when p;(n) = 0 and p;(c) = 1.

Sufficiency. Now consider the case of a candidate choosing p = 1. Using a similar reasoning as
in Lemma [A.1] V¢ € {c,n} o(t) = (1,0) is weakly dominated by (0,0). So on the equilibrium

path, p=1=1y > 0. O]

Proof of Proposition [l Given x = 0, we have m; = 0, Vy; € [0,1], j € {1,2}. Using (A.1),
the voter’s expected policy payoff from electing candidate 7 € {1,2} is 0. Consequently,

candidate j’s probability of winning the election does not depend on his or his opponent’s

2This can also be shown by contradiction using a similar reasoning as in Lemma
If y(n) > y(c), then a type n has a profitable deviation to zero communication effort so it

cannot be an equilibrium strategy.



platform choice: I'(o;(t),0_;) = 1/2, Vo;(t), o_;, t € {¢,n}, j € {1,2}. Using a similar
reasoning as in Lemma [A1] a type ¢ € {¢,n} candidate j € {1,2} has no incentive to
deviate from o;(t) = (0,0). Given o,(t) = (0,0) and communication is costly, the voter has
no incentive to exert strictly positive communication effort. Hence, the proposed strategies
constitute an equilibrium for all parameter values (notice that the voter elects candidate

j € {1,2} with probability 1/2 in such an equilibrium). O

Lemma A.3. A separating equilibrium ezists only if p(my = 0,2*)G = u(my = 0,2")G

where x* 1s the voter’s equilibrium level of attention.

Proof. The proof is by contradiction. Suppose candidates play a separating strategy and
that without loss of generality that p(my = 0,2%)G > p(mge = 0,2*)G. Since (by Lemma [1)
yi(n) =0, j € {1,2}, the above inequality implies that the voter always elects candidate 1
when communication with both candidates is unsuccessful, by . A type n candidate 2’s
expected utility is thus 0. A type n candidate 2 has a profitable deviation from the separating
strategy. We claim that when he commits to the new policy and exerts the communication
effort g»(n) which maximizes his expected utility, he gets a strictly positive expected payoff

(we formally prove this claim in Lemmald]). Hence, a separating equilibrium cannot exist. [

Proof of Lemma[d By Lemma , we have: yi(n) =0, j € {1,2}. Consider now a competent
candidate j € {1,2}. When choosing his communication effort, he takes as given his oppo-
nent’s communication effort (y_;) and the voter’s attention (z). His expected utility, when

he chooses communication effort y;, is:

- (ym ! ‘W) (1~ k)~ Clyy) (A2)



When a competent candidate j faces a competent opponent, he wins with probability 1 when
he communicates successfully with the voter and his opponent does not; with probability
1/2 when both communicate successfully (since the voter is indifferent) and when both are
unsuccessful (by Lemma; and probability 0, otherwise. When he faces a non-competent
candidate, he wins the election with probability 1 when communication is successful (this
occurs with probability y ). When communication is unsuccessful, he wins with probability
1/2. In all cases, he has to pay his cost of communication. A competent candidate gets 1 — k..
when he gets elected, and 0 otherwise.

After rearranging, we get that a competent candidate 1 chooses his communication effort
y; to maximize: max, e[ <1+%> (1 —ke) —q(1 — ko)~ — C(y;). We get the following
First-Order Condition (FOC):

() = 5 (A3)

Now let’s consider the voter’s attention. Her maximization problem is:

s {0+ (1= 0 (oG4 01— 00 F ) + 0= eG4 ) - o)}

z€[0,1]

In a separating equilibrium, the voter randomizes between both candidates when communica-
tion with both is unsuccessful (Lemma [A.3]). She also randomizes when communication with
both is successful since both candidates are competent. When communication is successful

only with candidate 1 (2), she elects candidate 1 (2). We thus have the following FOC:
o G
Co(@™) = a1 = a)5 (i + 1) = a1 = 9) Gy (A.4)

Where the second equality comes from the fact that y; = y» by (A.3]). We can see that y*(c)



and z* (j € {1,2}) are defined by the system of two equations and (). We now show
there exists a unique strictly positive solution to this system of equations. By Lemma [I] it
must be the players’ equilibrium communication strategies.

Denote: h(z) = q(1—q)G(C")~" (5ea) —C/(x). Since C,(-) and C(-) are thrice continuously
differentiable, the function h(-) is twice continuously differentiable. A necessary and sufficient
condition for the existence of a strictly positive y;(c) and z*, j € {1,2} is that the function
h(z) has a 0 on (0,1). Given the properties of the communication cost functions, h(0) = 0
and h(1) < 0. Therefore, it is sufficient that h’'(0) > 0. We have:

(1—q) Gt

/ _ q — " (x
e (Y =) R )

Since C/(0) = C”(0) = 0 by assumption, we have that #'(0) has the same sign as ¢(1—q) G5

z—0,

so h'(0) > 0 (i.e., h'(r) — +00). Hence there exists a strictly positive solution to —.

This solution is unique if A”(x) < 0. Using chain rules, we get:

_a0 =G (5 C(C)7 (F4a)
cr (e () ”

n'(z) =

Since C(-), C'(-) and CJ(-) are convex, we have that h”(-) < 0. This implies that the

equilibrium communication strategies are unique as claimed. O

Lemma A.4. We have: C"(y*(c))Cl/(z*) > q(1—q)Ge, where y*(c) and z* are the unique

strictly positive solutions to (@ and .

Proof. Using the properties of h(z), defined in the proof of Lemma |2, we know that we must

have: h'(z*) < 0 (since h(z) 22l o0 and W'(z) < 0). Using (A.5) and C'(y*(c)) = 52" by

q(1-q)G e —C" (y* () CY (a¥)
C"(y*(0))

Lemma we get b/ (z*) = . Since C"(y*(¢)) > 0, C"(y*(c))Cl(z*) —



q(1 — )Gk > 0. O

. . . dy*(c *
Proof of Lemma[3 By the Implicit Function Theorem (IFT), we have %—G()C’”(y (c)) =

1—ke Oz* dz* *) dy*(c) * : : oz* _ (1-g)z*C"(y*(c))
= Se and 95OV (2*) = q(1—q)G 557 +q(1—q)2*. Rearranging yields & = C”(y*(qc))CZ’(x*)fqg(!lfq)G%'
By Lemma |A .4 % > 0 and consequently, 83(/;G(C) > 0. O

Lemma A.5. When candidates play a separating strategy, * and y*(c) decrease with k..
Proof. Similar reasoning as for the proof of Lemma [3] n

Proof of Lemma[f When a competent candidate j € {1,2} chooses p; = 1, he gets:

*

1+yi(d)a —qyr (o)
N 2

Vi(Lyj(c);e) (1= ke) = Cly;(c)) (A.6)

When he deviates and chooses to campaign on the status quo policy (p = 0), he gets:

1—gq 1 —y* (c)x*
V;(0,0;¢) = 5~ ta 2]

(A7)

A competent candidate j has a 50% chance of being elected against a non-competent can-
didate and against a competent candidate when communication is not successful. He gets 1
when he is elected, since he does not implement the new policy. By Lemma [I, he does not
exert any communication effort when he chooses p; = 0. A competent candidate’s incentive
compatibility constraint (IC) is thus:

L+ yj(c)r* — qy*,;(c)z*
2

(1= k) = CE) =~ +q

For a non-competent candidate j, denote y;(n) his communication effort when he deviates
and campaigns on the new policy. Using a similar reasoning as in the proof of Lemma

8



gj(n) is defined by C’(g;(n)) = ==2*. By a similar reasoning as above, a non-competent

candidate j’s (IC) is:

1+9:(n)x* —qy*.(c)x* 1— 1—y*.(c)x*
2 2 2
The claim holds by inspection of (A.8) and (A.9) O

Lemmas and are preliminary results to prove Proposition [2]

Lemma A.6. When candidates play a separating strategy,

(i) An increase in G or a decrease in k. relazes the incentive compatibility constraint of a
competent candidate j € {1,2};

(11) An increase in G or a decrease in k. or ky tightens the incentive compatibility constraint

of a non-competent candidate j € {1,2}.

Proof. Start with a competent candidate. By the Envelope Theorem, we do not need to
consider the effect of G or k. on y;(c), j € {1,2}. By Lemma , an increase in G increases a
competent candidate —j’s and the voter’s attention. G has no direct effect on a competent
candidate’s expected payoff from committing to the new policy (see ) and to the status
quo policy (see ) Therefore, by Lemma an increase in G relaxes the incentive
compatibility constraint of a competent candidate j. A decrease in the policy cost k. increases
the expected payoff from committing to the new policy (does not affect the expected payoff
from committing to the status quo policy). Since a decrease in k. also increases a competent
candidate —j’s communication effort and the voter’ level of attention (Lemmal[A.F)), it relaxes
a competent candidate j’s incentive compatibility constraint by Lemma [l The reasoning

is exactly reversed for a non-competent candidate (noting that the inequality is reversed in



(A.9) compared to (A.8))). O]

Lemma A.7. There exist a unique k, > 0 and a unique k, : [0,1) — [0,1] which satisfy
k. < kn(k.), Vk. € (0, k.) such that for any given k. € (0,k,) and any given k, € (ke, kn(ke)),
there exist unique G > 0, G < G < 1 such that a separating equilibrium exists if and only if

G e G,q).

Proof. Necessity. Denote k., the unique solution to the equation Vi(1,y;5(c);c) = V;(0,05¢)
evaluated at G = 1E| To see that it exists, notice that for k. = 0, V;(1,y;(c);c) > V;(0,0;¢),
while for k. = 1, V;(1,45(c); ¢) < V;(0,0;c). Uniqueness follows from Lemma . If k. > k.,
is never satisfied. Assume then that k. < k.. There then exists a unique G € (0, 1) such
that holds if and only if G > G. To see that, note that * = 0 when G = 0. This implies
y*(c) = 0. A competent candidate gets (1 — k.)/2 if he chooses p; = 1 and 1/2 if he chooses
pj = 0. Since k. > 0, we must have V;(1,y;(c);c) < V;(0,0;¢) when G = 0. Since k. < ke,
Vi(1,y5(c);c) > V;(0,0;¢) evaluated at G = 1 (by Lemma . This guarantees existence
since all communication efforts and the voter’s attention are continuous in G. By Lemma
, a competent candidate j’s incentive compatibility constraint relaxes as G increases (i.e.,
the difference V;(1,y;j(c);c) — V;(0,0;c) increases with ). This guarantees uniqueness of
G. Existence and uniqueness of k,(k.) € (0,1) and G € (0,1) when k, < k,(k.) follows a
similar reasoning. Notice that for all k. < k., kn(ke) > k.. Suppose not. Then by Lemma

and the definition of k., V;(1,9;(n);n) < V;(0,0;n) as k, — k.. But this contradicts the

3The properties of the communication cost functions guarantee that y*(c) and z* are
continuous and bounded in GG. This implies that communication efforts, the voter’s attention,

and the expected payoffs are well defined at G = 1.

“The only difference is that the upper bound on k, depends on k., k,(k.), since a non-

competent candidate j’s incentive compatibility constraint depends on k. through the voter’s

attention and a competent candidate —j’s communication effort, see (A.9))).
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definition of k, (k.).

Sufficiency. Consider the following assessment:

(i) Candidates’ strategies are: o; = ((1,4%(c)), (0,0)), j € {1,2}, y*(c) defined in Lemma [2}
(ii) The voter’s communication strategy is #*, defined in Lemma ;

(iii) The voter’s electoral strategy is: s(m; = 1,mg = 0,2%) = 1, s(my = 0,my = 1,2%) =
0, s(my =0,my=0,2%) = s(m; = 1,mg = 1,2%) = 1/2.

The voter’s electoral strategy is a best response to the candidates’ strategies given the voter’s
Bayesian posterior. The voter’s attention and candidates’ communication efforts are best
responses according to Lemma . Lastly, given k. € (0, k.), kn € (ke, kn(k.)), and G € [G, G,
the candidates’ policy choices (and strategies) are incentive compatible by the reasoning

above. Thus, the separating assessment described above is an equilibrium according to

Definition [l O
Proof of Proposition[d The proof follows directly from Lemma [A.7] O

Proof of Proposition[3. Suppose k. < k. and k, < k_n(k;c) so there exist G, G such that
a separating equilibrium exists VG € [G,G] (Proposition . For a given G, the voter’s
expected payoff is strictly higher in a separating assessment than in any other assessment
for a non-empty open set of policy costs (see Appendix |C| for more details). Therefore, there

exists a non-empty open set of policy costs such that V,(G) > V¢(G"W), with GV > @ O

°In Appendix , we show that there exists k,(G, k.) > k. such that the voter’s ex-ante
expected welfare is highest when candidates play a separating strategy. The claim thus holds
true for the following set: {k. € (0,ke), kn € (0,Fkn(0))|ke < Kk < min{k,(G, ke), kn(ke)}}
(it can be shown that k,(k.) is decreasing with k., details available upon request). This
set is non-empty since when k, tends to k., it can be checked that G — G and k. <

min{k, (G, k), kn(ke)}.

11



Lemma A.8. There exists a continuous mapping ky, - [0,1] x [0,1] — (k¢, 1] such that for a
giwen G, the voter’s attention in a separating assessment is strictly greater than the voter’s

attention in all other possible assessments for all k,, € (k, k:An(G, kc)).

Proof. Denote 7 = —L/G and «; = zy; the probability of successful communication with
candidate j € {1,2}. In a separating assessment, the voter’s attention and competent can-
didates’ communication efforts are defined by the system of equations —. Using a
similar reasoning as in Lemma [2| and the assumptions that 7 > ¢/(1 — ¢), we can show
that in a pooling assessment (p;(t) = 1, V5 € {1,2}, t € {c¢,n}), the voter’s attention
and competent candidates’ communication efforts are defined by: C'(y*(c)) = (1 — k.)aP/2,
C'(y*(c)) = (1 — k.)2?/2, and C)(2P) = q(1 — q¢)(1 +7)G(y?(c) — yP(n)). Using a similar rea-
soning as in Lemma [2] there exists at least one positive solution to this system of equations.
For our claim, we simply need to consider the solution with the highest level of attention
by the voter, denoted by zP. Using the same reasoning as in Lemmas [3| [A.4] and we
can show that the voter’s attention and competent candidates’ communication efforts are
continuously increasing with G and k,, and continuously decreasing with k.. Since x* does
not depend on k,, as k, — 1, 2P > z* (since y*(n) — 0 and (1 + 7)G > G). Inversely, as
k, — k., we have 27 — 0 (since y?(n) — y”(c)) and so 2P < z*. By the Intermediate Value
Theorem, there exists a unique l%;p(G, k.) € (k., 1) such that z? < z* for all k,, < l;lp(G’, k.)
(since both 2P and z* are continuous in G and k., kAnp(G, k.) is continuous in G and k).

We now compare the voter’s level of attention in a separating assessment with her level of
attention in an assessment when (without loss of generality) candidate 1 pools on the new
policy independent of his type (p1(c) = pi1(n) = 1) and candidate 2 pools on the status quo

policy (p2(c) = pa(n) = 0). The voter’s attention and candidate 1’s communication efforts

12



are defined by: C!(2P') = ¢Gy* (¢) + (1 — @)yi* (n)L and C'(y*(t)) = (1 — k)P, t € {¢,n}
(see Appendix |C| for more details). For our claim, we simply need to consider the highest
level of attention by the voter, denoted zP!.

Using the same reasoning as in Lemmas [3], [A.4] and [A.5] we can show that the voter’s atten-
tion and a competent candidate 1’s communication effort are continuously increasing with G
and k, and continuously decreasing with k.. Since 7 > ¢/(1—q), there exists k, (G, ke) > ke
such that as k,, — k;lpl(G, ke), Pt — O.ﬁ and so 2P' < z*. As k, — 1, we have z* < P
(since yi'(n) — 0 and ¢G > ¢(1 — ¢)G). By the Intermediate Value Theorem, there exists a
unique kAnpl(G, k.) € (ke, 1) such that 2P < z* for all &k, < k:Anpl(G, k).

We now compare the voter’s level of attention in a separating assessment with her level of at-
tention in an asymmetric assessment when (without loss of generality) candidate 1 pools on
the new policy (p1(c¢) = pi(n) = 1) and candidate 2 separates (pa(c) = 1, pa(n) = 0).
The voter elects candidate 1 only if communication with candidate 1 is successful and
communication with candidate 2 is not successful. Denote x® the voter’s attention and
yi(t), j € {1,2} is a type t € {¢,n} candidate j’s communication effort in this asymmet-
ric assessment. The voter’s attention and candidates’ communication efforts are defined
by (for more details see Appendix : C!(z%) = q(1 — ¢)Gyi(c) + (1 — ¢)*Ly§(n) + q(1 —
DL = G)L = 205(c))yi(n), C'(yi(t) = (¢(1 —a5(c)) + (1 — ))a"(1 — k), t € {c,n},
C'(y5(c)) = (qaf(c) + (1 — q)af(n))z®(1 — k.) As above, we only need to consider the
solution with the highest voter’s attention (supposing it exists), denoted z® The voter’s
attention and candidates’ communication efforts are continuous in G, k, and k.. In Ap-

pendix [C| we show that the associated communication subform admits an equilibrium only

SSince y'(n) — yi'(c) as k, — ke, Gy (¢) + (1 — @)y (n)L < 0. The voter then pays

no attention to the campaign and by Lemma , the assessment cannot be an equilibrium.
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if: qGy{(c) + (1 — q)Lyf(n) + q¢(L — G)(1 — a5(c))ys(n) > 0. We also prove that there ex-
ists /%Z(G, k.) > k. such that this condition is never satisfied whenever k, < /;:;‘;(G, ke). At
kn = k%(G, k), we have 2 defined as the solution to C/(2%) = q(1 — ¢)(G — L)a2(c)ys(n).
There are two possibilities. (i) 2% > x* and in this case, we denote kAna(G, ko) = k(G ke).
(i) 2° < 2* and there exists k, (G,kc) € (k%(G, ke), 1] such that for all k, < k, (G, ke),
z* > 2 (k(G, k) > k., guarantees l;La(G, ke) > k:c)

The thus claim holds for &, (G, k.) = min{k, (G, ko), kn (G, ko), kn (G, k.)}. 0

Proof of Proposition [ Define l%;l(kc) = minGe[o,l]l;l(G, k.). Note that /{:An(kc) > k. by

Lemma [A.8, For k. € (0,k.) and k, € (kc,min{lg;,;(kc),k_n(kc)}) (a non-empty interval),

the voter pays strictly more attention in a separating assessment than in other assessment
for all G (Lemma [A.8]). This directly implies point (i). Point (ii) follows from the fact that
x* is increasing with G. Point (iii) from the fact that the highest level of attention is unique

and equal to z* evaluated at G = G. O

"As k, = 1, yf(n) = 0so C)(z%) = q(1—q)Gyi(c). If (1 —a5(c))+(1—q) > 1/2 (always
satisfied when ¢ < 1/2), then y{(c) > y*(c) and z* > z* at k, = 1. In this case, denote
l%;a(G, k.) = min{k, € (k. 1)|z* = 2*} and kAna(G, k.) < 1. Otherwise, it is possible (but not

guaranteed) that for all k, > k., % < z*. Denote then kAna(G, ko) = 1.
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