
The Voters’ Curses

Why We Need Goldilocks Voters

Supplemental Appendix: Representative voter set-up

A Equilibrium definition and proofs

We first introduce some notation. Denote by σj(t) = (pj(t), yj(t)) ∈ {0, 1} × [0, 1] the

strategy (policy choice and communication effort) of a type t ∈ {c, n} candidate j ∈ {1, 2}.

The tuple of strategies is denoted by σj ≡ (σj(c), σj(n)). Denote by mj ∈ {∅, pj} the

outcome of electoral communication: whether the voter observes candidate j’s platform.

If mj = ∅ (mj = pj), communication has been unsuccessful (successful). We also denote

by µ(mj, x) ≡ µj the voter’s posterior belief that candidate j is competent conditional on

observing mj and her attention x. Finally, denote voter’s electoral strategy (probability of

electing candidate 1): s1(m1,m2, x) ∈ [0, 1].

Definition 1. The players’ strategies form a Perfect Bayesian Equilibrium if the following

conditions are satisfied.1

1When indifferent, we suppose that candidates follow the strategy which maximizes the

voter’s welfare as it is usual.
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1) s1(m1,m2, x) =


1

1/2

0

⇔ Eµ(uv(p1, x)|m1, σ1) T Eµ(uv(p2, x)|m2, σ2);

2) yj(t, pj) = argmaxy∈[0,1] E(uj(pj, y; t)|x, s1, σ−j), j ∈ {1, 2}, t ∈ {c, n};

3) x = argmaxx∈[0,1] E(uv(pe, x)|s1, σ1, σ2);

4) ∀j ∈ {1, 2}, t ∈ {c, n},

pj(t) =


1

0

⇔ E(uj(1, yj(t, 1); t)|x, s1, σ−j) R E(uj(0, yj(t, 0); t)|x, s1, σ−j);

5) µ(mj, x) satisfies Bayes’ rule whenever possible.

Note that condition 1) is equivalent to: after observing mj and m−j, the voter elects candidate

j ∈ {1, 2} with probability 1 rather than his opponent (−j) if and only if (∀mj, m−j, σj,

and σ−j):

µjpj(c)G+ (1− µj)pj(n)L > µ−jp−j(c)G+ (1− µ−j)p−j(n)L (A.1)

Let Γ(σj(t), σ−j) = E
[
IA + IB

2

∣∣ pj(t), yj(t);σ−j] be the probability that a type t ∈ {c, n}

candidate j is elected when he plays strategy σj(t) and his opponent plays σ−j, where A

is the event “equation (A.1) holds” and B is the event “both sides of (A.1) are equal.”

The expectation operator is over the probability of successful communication with candi-

date j ∈ {1, 2}, candidate −j and candidate −j’s type. Γ(σj(t), σ−j) is increasing with

µ(pj(t), x)pj(c)G+ (1− µ(pj(t), x))pj(n)L and µ(∅, x)pj(c)G+ (1− µ(∅, x))pj(n)L.

Lemma A.1. There is no equilibrium in which pj(c) = 0 and pj(n) = 1.

Proof. The proof is by contradiction. First, suppose a non-competent candidate j plays

σj(n) = (1, yj(n)), yj(n) > 0 and a competent candidate j chooses pj(c) = 0. When commu-

nication with the voter is successful, a non-competent candidate j is elected with strictly pos-
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itive probability if and only if (by (A.1)): L ≥ µ−jp−j(c)G+(1−µ−j)p−j(n)L. When commu-

nication with the voter is not successful, a non-competent candidate j is elected with strictly

positive probability if and only if: (1 − µ(∅, x))L ≥ µ−jp−j(c)G + (1 − µ−j)p−j(n)L. Given

the properties of the communication cost functions and yj(n) > 0, we have µ(∅, x) ∈ (0, 1).

Then it must be that: (1 − µ(∅, x))L > L. Therefore, a type n candidate’s probability of

being elected is strictly greater when mj = ∅. Because a candidate always values being

in office (kn < 1) and communication is costly, σj(n) = (1, yj(n)) is strictly dominated by

σj(n) = (1, 0). Hence we have reached a contradiction. Suppose a non-competent candidate

j plays σj(n) = (1, 0). Since the voter never observes his platform, his choice of pj(n) does

not affect his probability of being elected. Since the new policy is costly (kn > 0), it must be

that σj(n) = (1, 0) is weakly dominated by (0, 0).

A non-competent candidate never wants to choose p = 1 when a competent type chooses

p = 0. By separating, he simultaneously lowers the probability of election and his expected

payoff conditional on election (due to the policy cost).

Lemma A.2. In any equilibrium, a candidate’s probability of winning the election is (weakly)

greater after successful communication.

Proof. Fix candidate −j’s strategy σ−j. Using Lemma A.1, we need to consider only three

cases: 1) pj(c) = 0, pj(n) = 0, 2) pj(c) = 1, pj(n) = 0, and 3) pj(c) = 1, pj(n) = 1. In case 1),

successful communication has no impact on the probability of being elected since the voter’s

payoff does not depend on a candidate’s type. In case 2), using a similar reasoning as in the

proof of Lemma A.1, a type n exerts zero communication effort. Successful communication

thus reveals a candidate is competent and implements the new policy. By (A.1), candidate

j’s probability of winning the election is higher after successful communication. In case 3),
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at the communication stage, both types solve the same maximization problem modulo the

policy cost. A type n’s value of office is lower under the assumption that kc < kn. Therefore,

a type c’s communication effort is weakly higher (as a result of condition 2 in Definition 1).2

Successful communication thus weakly increases the voter’s posterior about j’s competence.

By (A.1), the probability she elects candidate j is higher.

Proof of Lemma 1. Necessity. We prove the counterpart: pj = 0 ⇒ yj = 0. On the equilib-

rium path, given pj(t), the maximization problem of a type t ∈ {c, n} candidate j ∈ {1, 2}

chooses yj(t) is: maxy≥0 Γ((pj(t), y), σ−j)(1 − pj(t)kt) − C(y), j ∈ {1, 2} t ∈ {c, n} The so-

lution yj(t) affects Γ(·; ·) only through the probability that the voter observes mj(t) = pj(t).

Using Lemma A.1, we just need to focus on two cases: 1) pj(c) = pj(n) = 0 and 2) pj(c) = 1

and pj(n) = 0. In case 1), since the voter anticipates correctly candidates’ strategies in

equilibrium, communication has no effect on a candidate’s electoral chances. Since commu-

nication is costly, it must be that yj(t) = 0. In case 2), by (A.1), a type n candidate j wants

to minimize the probability that the voter observes mj = 0. Since communication is costly,

it must be that a type n candidate j chooses yj(n) = 0 when pj(n) = 0 and pj(c) = 1.

Sufficiency. Now consider the case of a candidate choosing p = 1. Using a similar reasoning as

in Lemma A.1, ∀t ∈ {c, n} σ(t) = (1, 0) is weakly dominated by (0, 0). So on the equilibrium

path, p = 1⇒ y > 0.

Proof of Proposition 1. Given x = 0, we have mj = ∅, ∀yj ∈ [0, 1], j ∈ {1, 2}. Using (A.1),

the voter’s expected policy payoff from electing candidate j ∈ {1, 2} is 0. Consequently,

candidate j’s probability of winning the election does not depend on his or his opponent’s

2This can also be shown by contradiction using a similar reasoning as in Lemma A.1.

If y(n) > y(c), then a type n has a profitable deviation to zero communication effort so it

cannot be an equilibrium strategy.

4



platform choice: Γ(σj(t), σ−j) = 1/2, ∀σj(t), σ−j, t ∈ {c, n}, j ∈ {1, 2}. Using a similar

reasoning as in Lemma A.1, a type t ∈ {c, n} candidate j ∈ {1, 2} has no incentive to

deviate from σj(t) = (0, 0). Given σj(t) = (0, 0) and communication is costly, the voter has

no incentive to exert strictly positive communication effort. Hence, the proposed strategies

constitute an equilibrium for all parameter values (notice that the voter elects candidate

j ∈ {1, 2} with probability 1/2 in such an equilibrium).

Lemma A.3. A separating equilibrium exists only if µ(m1 = ∅, x∗)G = µ(m2 = ∅, x∗)G

where x∗ is the voter’s equilibrium level of attention.

Proof. The proof is by contradiction. Suppose candidates play a separating strategy and

that without loss of generality that µ(m1 = ∅, x∗)G > µ(m2 = ∅, x∗)G. Since (by Lemma 1)

y∗j (n) = 0, j ∈ {1, 2}, the above inequality implies that the voter always elects candidate 1

when communication with both candidates is unsuccessful, by (A.1). A type n candidate 2’s

expected utility is thus 0. A type n candidate 2 has a profitable deviation from the separating

strategy. We claim that when he commits to the new policy and exerts the communication

effort ŷ2(n) which maximizes his expected utility, he gets a strictly positive expected payoff

(we formally prove this claim in Lemma 4). Hence, a separating equilibrium cannot exist.

Proof of Lemma 2. By Lemma 1, we have: y∗j (n) = 0, j ∈ {1, 2}. Consider now a competent

candidate j ∈ {1, 2}. When choosing his communication effort, he takes as given his oppo-

nent’s communication effort (y−j) and the voter’s attention (x). His expected utility, when

he chooses communication effort yj, is:

Vj(1, yj; c) = q

(
yjx(1− y−jx) +

yjxy−jx+ (1− yjx)(1− y−jx)

2

)
(1− kc)

+ (1− q)
(
yjx+

1− yjx
2

)
(1− kc)− C(yj) (A.2)
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When a competent candidate j faces a competent opponent, he wins with probability 1 when

he communicates successfully with the voter and his opponent does not; with probability

1/2 when both communicate successfully (since the voter is indifferent) and when both are

unsuccessful (by Lemma A.3); and probability 0, otherwise. When he faces a non-competent

candidate, he wins the election with probability 1 when communication is successful (this

occurs with probability yjx). When communication is unsuccessful, he wins with probability

1/2. In all cases, he has to pay his cost of communication. A competent candidate gets 1−kc

when he gets elected, and 0 otherwise.

After rearranging, we get that a competent candidate 1 chooses his communication effort

yj to maximize: maxyj∈[0,1]

(
1+yjx

2

)
(1 − kc) − q(1 − kc)y−jx

2
− C(yj). We get the following

First-Order Condition (FOC):

C ′(yj(c)) =
1− kc

2
x (A.3)

Now let’s consider the voter’s attention. Her maximization problem is:

max
x∈[0,1]

{
q2G+ (1− q)q

(
y2xG+ (1− y2x)

G

2

)
+ (1− q)qG

2
(1 + y1x)− Cv(x)

}

In a separating equilibrium, the voter randomizes between both candidates when communica-

tion with both is unsuccessful (Lemma A.3). She also randomizes when communication with

both is successful since both candidates are competent. When communication is successful

only with candidate 1 (2), she elects candidate 1 (2). We thus have the following FOC:

C ′v(x
∗) = q(1− q)G

2
(y1 + y2) = q(1− q)Gy1 (A.4)

Where the second equality comes from the fact that y1 = y2 by (A.3). We can see that y∗(c)
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and x∗ (j ∈ {1, 2}) are defined by the system of two equations (3) and (4). We now show

there exists a unique strictly positive solution to this system of equations. By Lemma 1, it

must be the players’ equilibrium communication strategies.

Denote: h(x) = q(1−q)G(C ′)−1
(
1−kc
2
x
)
−C ′v(x). Since Cv(·) and C(·) are thrice continuously

differentiable, the function h(·) is twice continuously differentiable. A necessary and sufficient

condition for the existence of a strictly positive y∗1(c) and x∗, j ∈ {1, 2} is that the function

h(x) has a 0 on (0, 1). Given the properties of the communication cost functions, h(0) = 0

and h(1) < 0. Therefore, it is sufficient that h′(0) > 0. We have:

h′(x) =
q(1− q)G1−kc

2

C ′′
(
(C ′)−1

(
1−kc
2
x
)) − C ′′v (x) (A.5)

Since C ′′v (0) = C ′′(0) = 0 by assumption, we have that h′(0) has the same sign as q(1−q)G1−kc
2

so h′(0) > 0 (i.e., h′(x)
x→0−−→ +∞). Hence there exists a strictly positive solution to (3)-(4).

This solution is unique if h′′(x) ≤ 0. Using chain rules, we get:

h′′(x) = −
q(1− q)G

(
1−kc
2

)2
C ′′′
(
(C ′)−1

(
1−kc
2
x
))

C ′′
(
(C ′)−1

(
1−kc
2
x
))3 − C ′′′v (x)

Since C(·), C ′(·) and C ′v(·) are convex, we have that h′′(·) ≤ 0. This implies that the

equilibrium communication strategies are unique as claimed.

Lemma A.4. We have: C ′′(y∗(c))C ′′v (x∗) > q(1−q)G1−kc
2

, where y∗(c) and x∗ are the unique

strictly positive solutions to (3) and (4).

Proof. Using the properties of h(x), defined in the proof of Lemma 2, we know that we must

have: h′(x∗) < 0 (since h(x)
x→1−−→ −∞ and h′′(x) ≤ 0). Using (A.5) and C ′(y∗(c)) = 1−kc

2
x∗ by

Lemma 2, we get h′(x∗) =
q(1−q)G 1−kc

2
−C′′(y∗(c))C′′v (x∗)

C′′(y∗(c))
. Since C ′′(y∗(c)) > 0, C ′′(y∗(c))C ′′v (x∗)−
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q(1− q)G1−kc
2

> 0.

Proof of Lemma 3. By the Implicit Function Theorem (IFT), we have ∂y∗(c)
∂G

C ′′(y∗(c)) =

1−kc
2

∂x∗

∂G
and ∂x∗

∂G
C ′′v (x∗) = q(1−q)G∂y∗(c)

∂G
+q(1−q)x∗. Rearranging yields ∂x∗

∂G
= q(1−q)x∗C′′(y∗(c))

C′′(y∗(c))C′′v (x
∗)−q(1−q)G 1−kc

2

.

By Lemma A.4, ∂x∗

∂G
> 0 and consequently, ∂y∗(c)

∂G
> 0.

Lemma A.5. When candidates play a separating strategy, x∗ and y∗(c) decrease with kc.

Proof. Similar reasoning as for the proof of Lemma 3.

Proof of Lemma 4. When a competent candidate j ∈ {1, 2} chooses pj = 1, he gets:

Vj(1, y
∗
j (c); c) =

1 + y∗j (c)x
∗ − qy∗−j(c)x∗

2
(1− kc)− C(y∗j (c)) (A.6)

When he deviates and chooses to campaign on the status quo policy (p = 0), he gets:

Vj(0, 0; c) =
1− q

2
+ q

1− y∗−j(c)x∗

2
(A.7)

A competent candidate j has a 50% chance of being elected against a non-competent can-

didate and against a competent candidate when communication is not successful. He gets 1

when he is elected, since he does not implement the new policy. By Lemma 1, he does not

exert any communication effort when he chooses pj = 0. A competent candidate’s incentive

compatibility constraint (IC) is thus:

1 + y∗j (c)x
∗ − qy∗−j(c)x∗

2
(1− kc)− C(y∗j (c)) ≥

1− q
2

+ q
1− y∗−j(c)x∗

2
(A.8)

For a non-competent candidate j, denote ŷj(n) his communication effort when he deviates

and campaigns on the new policy. Using a similar reasoning as in the proof of Lemma 2,
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ŷj(n) is defined by C ′(ŷj(n)) = 1−kn
2
x∗. By a similar reasoning as above, a non-competent

candidate j’s (IC) is:

(
1 + ŷj(n)x∗ − qy∗−j(c)x∗

2

)
(1− kn)− C(ŷj(n)) ≤ 1− q

2
+ q

1− y∗−j(c)x∗

2
(A.9)

The claim holds by inspection of (A.8) and (A.9)

Lemmas A.6 and A.7 are preliminary results to prove Proposition 2.

Lemma A.6. When candidates play a separating strategy,

(i) An increase in G or a decrease in kc relaxes the incentive compatibility constraint of a

competent candidate j ∈ {1, 2};

(ii) An increase in G or a decrease in kc or kn tightens the incentive compatibility constraint

of a non-competent candidate j ∈ {1, 2}.

Proof. Start with a competent candidate. By the Envelope Theorem, we do not need to

consider the effect of G or kc on y∗j (c), j ∈ {1, 2}. By Lemma 3, an increase in G increases a

competent candidate −j’s and the voter’s attention. G has no direct effect on a competent

candidate’s expected payoff from committing to the new policy (see (A.6)) and to the status

quo policy (see (A.7)). Therefore, by Lemma 4, an increase in G relaxes the incentive

compatibility constraint of a competent candidate j. A decrease in the policy cost kc increases

the expected payoff from committing to the new policy (does not affect the expected payoff

from committing to the status quo policy). Since a decrease in kc also increases a competent

candidate −j’s communication effort and the voter’ level of attention (Lemma A.5), it relaxes

a competent candidate j’s incentive compatibility constraint by Lemma 4. The reasoning

is exactly reversed for a non-competent candidate (noting that the inequality is reversed in
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(A.9) compared to (A.8)).

Lemma A.7. There exist a unique kc > 0 and a unique kn : [0, 1) → [0, 1] which satisfy

kc < kn(kc), ∀kc ∈ (0, kc) such that for any given kc ∈ (0, kc) and any given kn ∈ (kc, kn(kc)),

there exist unique G > 0, G < G < 1 such that a separating equilibrium exists if and only if

G ∈ [G,G].

Proof. Necessity. Denote kc, the unique solution to the equation Vj(1, y
∗
j (c); c) = Vj(0, 0; c)

evaluated at G = 1.3 To see that it exists, notice that for kc = 0, Vj(1, y
∗
j (c); c) > Vj(0, 0; c),

while for kc = 1, Vj(1, y
∗
j (c); c) < Vj(0, 0; c). Uniqueness follows from Lemma A.6. If kc > kc,

(A.8) is never satisfied. Assume then that kc < kc. There then exists a unique G ∈ (0, 1) such

that (A.8) holds if and only if G ≥ G. To see that, note that x∗ = 0 when G = 0. This implies

y∗(c) = 0. A competent candidate gets (1− kc)/2 if he chooses pj = 1 and 1/2 if he chooses

pj = 0. Since kc > 0, we must have Vj(1, y
∗
j (c); c) < Vj(0, 0; c) when G = 0. Since kc < kc,

Vj(1, y
∗
j (c); c) > Vj(0, 0; c) evaluated at G = 1 (by Lemma A.6). This guarantees existence

since all communication efforts and the voter’s attention are continuous in G. By Lemma

A.6, a competent candidate j’s incentive compatibility constraint relaxes as G increases (i.e.,

the difference Vj(1, y
∗
j (c); c) − Vj(0, 0; c) increases with G). This guarantees uniqueness of

G. Existence and uniqueness of kn(kc) ∈ (0, 1) and G ∈ (0, 1) when kn < kn(kc) follows a

similar reasoning.4 Notice that for all kc < kc, kn(kc) > kc. Suppose not. Then by Lemma

A.6 and the definition of kc, Vj(1, ŷj(n);n) < Vj(0, 0;n) as kn → kc. But this contradicts the

3The properties of the communication cost functions guarantee that y∗(c) and x∗ are

continuous and bounded in G. This implies that communication efforts, the voter’s attention,

and the expected payoffs are well defined at G = 1.
4The only difference is that the upper bound on kn depends on kc, kn(kc), since a non-

competent candidate j’s incentive compatibility constraint depends on kc through the voter’s

attention and a competent candidate −j’s communication effort, see (A.9)).
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definition of kn(kc).

Sufficiency. Consider the following assessment:

(i) Candidates’ strategies are: σj = ((1, y∗(c)), (0, 0)), j ∈ {1, 2}, y∗(c) defined in Lemma 2;

(ii) The voter’s communication strategy is x∗, defined in Lemma 2;

(iii) The voter’s electoral strategy is: s(m1 = 1,m2 = ∅, x∗) = 1, s(m1 = ∅,m2 = 1, x∗) =

0, s(m1 = ∅,m2 = ∅, x∗) = s(m1 = 1,m2 = 1, x∗) = 1/2.

The voter’s electoral strategy is a best response to the candidates’ strategies given the voter’s

Bayesian posterior. The voter’s attention and candidates’ communication efforts are best

responses according to Lemma 2. Lastly, given kc ∈ (0, kc), kn ∈ (kc, kn(kc)), and G ∈ [G,G],

the candidates’ policy choices (and strategies) are incentive compatible by the reasoning

above. Thus, the separating assessment described above is an equilibrium according to

Definition 1.

Proof of Proposition 2. The proof follows directly from Lemma A.7.

Proof of Proposition 3. Suppose kc < kc and kn < kn(kc) so there exist G, G such that

a separating equilibrium exists ∀G ∈ [G,G] (Proposition 2). For a given G, the voter’s

expected payoff is strictly higher in a separating assessment than in any other assessment

for a non-empty open set of policy costs (see Appendix C for more details). Therefore, there

exists a non-empty open set of policy costs such that Vv(G) > V e
v (GW ), with GW > G.5

5In Appendix C, we show that there exists k̆n(G, kc) > kc such that the voter’s ex-ante

expected welfare is highest when candidates play a separating strategy. The claim thus holds

true for the following set: {kc ∈ (0, kc), kn ∈ (0, kn(0))|kc < kn < min{k̆n(G, kc), kn(kc)}}

(it can be shown that kn(kc) is decreasing with kc, details available upon request). This

set is non-empty since when kn tends to kc, it can be checked that G → G and kc <

min{k̆n(G, kc), kn(kc)}.
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Lemma A.8. There exists a continuous mapping k̂n : [0, 1]× [0, 1]→ (kc, 1] such that for a

given G, the voter’s attention in a separating assessment is strictly greater than the voter’s

attention in all other possible assessments for all kn ∈ (kc, k̂n(G, kc)).

Proof. Denote τ = −L/G and αj = xyj the probability of successful communication with

candidate j ∈ {1, 2}. In a separating assessment, the voter’s attention and competent can-

didates’ communication efforts are defined by the system of equations (3)-(4). Using a

similar reasoning as in Lemma 2 and the assumptions that τ > q/(1 − q), we can show

that in a pooling assessment (pj(t) = 1, ∀j ∈ {1, 2}, t ∈ {c, n}), the voter’s attention

and competent candidates’ communication efforts are defined by: C ′(yp(c)) = (1 − kc)xp/2,

C ′(yp(c)) = (1− kc)xp/2, and C ′v(x
p) = q(1− q)(1 + τ)G(yp(c)− yp(n)). Using a similar rea-

soning as in Lemma 2, there exists at least one positive solution to this system of equations.

For our claim, we simply need to consider the solution with the highest level of attention

by the voter, denoted by xp. Using the same reasoning as in Lemmas 3, A.4, and A.5, we

can show that the voter’s attention and competent candidates’ communication efforts are

continuously increasing with G and kn and continuously decreasing with kc. Since x∗ does

not depend on kn, as kn → 1, xp > x∗ (since yp(n) → 0 and (1 + τ)G > G). Inversely, as

kn → kc, we have xp → 0 (since yp(n) → yp(c)) and so xp < x∗. By the Intermediate Value

Theorem, there exists a unique k̂n
p
(G, kc) ∈ (kc, 1) such that xp < x∗ for all kn < k̂n

p
(G, kc)

(since both xp and x∗ are continuous in G and kc, k̂n
p
(G, kc) is continuous in G and kc).

We now compare the voter’s level of attention in a separating assessment with her level of

attention in an assessment when (without loss of generality) candidate 1 pools on the new

policy independent of his type (p1(c) = p1(n) = 1) and candidate 2 pools on the status quo

policy (p2(c) = p2(n) = 0). The voter’s attention and candidate 1’s communication efforts
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are defined by: C ′v(x
p1) = qGyp11 (c) + (1− q)yp11 (n)L and C ′(yp11 (t)) = (1− kt)xp1 , t ∈ {c, n}

(see Appendix C for more details). For our claim, we simply need to consider the highest

level of attention by the voter, denoted xp1 .

Using the same reasoning as in Lemmas 3, A.4, and A.5, we can show that the voter’s atten-

tion and a competent candidate 1’s communication effort are continuously increasing with G

and kn and continuously decreasing with kc. Since τ > q/(1−q), there exists ḱn
p1

(G, kc) > kc

such that as kn → ḱn
p1

(G, kc), x
p1 → 0.6 and so xp1 < x∗. As kn → 1, we have x∗ < xp1

(since yp11 (n)→ 0 and qG > q(1− q)G). By the Intermediate Value Theorem, there exists a

unique k̂n
p1

(G, kc) ∈ (kc, 1) such that xp1 < x∗ for all kn < k̂n
p1

(G, kc).

We now compare the voter’s level of attention in a separating assessment with her level of at-

tention in an asymmetric assessment when (without loss of generality) candidate 1 pools on

the new policy (p1(c) = p1(n) = 1) and candidate 2 separates (p2(c) = 1, p2(n) = 0).

The voter elects candidate 1 only if communication with candidate 1 is successful and

communication with candidate 2 is not successful. Denote xa the voter’s attention and

yaj (t), j ∈ {1, 2} is a type t ∈ {c, n} candidate j’s communication effort in this asymmet-

ric assessment. The voter’s attention and candidates’ communication efforts are defined

by (for more details see Appendix C): C ′v(x
a) = q(1 − q)Gya1(c) + (1 − q)2Lya1(n) + q(1 −

q)(L − G)(1 − 2αa2(c))ya1(n), C ′(ya1(t)) = (q(1 − αa2(c)) + (1 − q))xa(1 − kt), t ∈ {c, n},

C ′(ya2(c)) = (qαa1(c) + (1 − q)αa1(n))xa(1 − kc) As above, we only need to consider the

solution with the highest voter’s attention (supposing it exists), denoted xa. The voter’s

attention and candidates’ communication efforts are continuous in G, kn and kc. In Ap-

pendix C, we show that the associated communication subform admits an equilibrium only

6Since yp11 (n) → yp11 (c) as kn → kc, qGy
p1
1 (c) + (1 − q)yp11 (n)L < 0. The voter then pays

no attention to the campaign and by Lemma 1, the assessment cannot be an equilibrium.
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if: qGya1(c) + (1 − q)Lya1(n) + q(L − G)(1 − αa2(c))ya1(n) ≥ 0. We also prove that there ex-

ists ḱan(G, kc) > kc such that this condition is never satisfied whenever kn ≤ ḱan(G, kc). At

kn = ḱan(G, kc), we have xa defined as the solution to C ′v(x
a) = q(1 − q)(G − L)αa2(c)ya1(n).

There are two possibilities. (i) xa ≥ x∗ and in this case, we denote k̂n
a
(G, kC) = ḱan(G, kC).

(ii) xa < x∗ and there exists k̂n
a
(G, kC) ∈ (ḱan(G, kC), 1] such that for all kn < k̂n

a
(G, kC),

x∗ > xa (ḱan(G, kc) > kc guarantees k̂n
a
(G, kc) > kc).

7

The thus claim holds for k̂n(G, kc) = min{k̂n
p
(G, kc), k̂n

pj
(G, kc), k̂n

a
(G, kc)}.

Proof of Proposition 4. Define
̂̂
kn(kc) = minG∈[0,1] k̂n(G, kc). Note that

̂̂
kn(kc) > kc by

Lemma A.8. For kc ∈ (0, kc) and kn ∈ (kc,min{ ̂̂kn(kc), kn(kc)}) (a non-empty interval),

the voter pays strictly more attention in a separating assessment than in other assessment

for all G (Lemma A.8). This directly implies point (i). Point (ii) follows from the fact that

x∗ is increasing with G. Point (iii) from the fact that the highest level of attention is unique

and equal to x∗ evaluated at G = G.

7As kn → 1, ya1(n)→ 0 so C ′v(x
a) = q(1−q)Gya1(c). If q(1−αa2(c))+(1−q) > 1/2 (always

satisfied when q < 1/2), then ya1(c) > y∗(c) and xa > x∗ at kn = 1. In this case, denote

k̂n
a
(G, kc) = min{kn ∈ (kc, 1)|xa = x∗} and k̂n

a
(G, kc) < 1. Otherwise, it is possible (but not

guaranteed) that for all kn > kc, x
a < x∗. Denote then k̂n

a
(G, kC) = 1.
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